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We consider a position differential game of encounter with a target set at a spe-
cified instant, We derive one sufficient condition by whose fulfillment the pur-
suer ensures himself a definite qualitative result of the game, The construction
of the first player's strategy is based on the program construction introduced in
[1—38]. The results abut the investigations in [1 — 5].

1. We consider a conflict-controlled system described by the vector differential

equation dx/dt = A ()z + [ (¢, 4, 9) @D
x [to] = Ty, ueb, velQ

Here f (¢, u, v) is a continuous n-dimensional vector-valued function, u and v are
the player's controls, P and () are compacta in appropriate vector spaces, By {}n
we denote the vector composed from the first m (m < n) coordinates of vector z. By
the problem's hypothesis a convex bounded closed set M is given in the space {Z}p,.
The first player, directing the choice of control u, strives to encounter this set by an
instant ¢ known in advance, The second player () obstructs this,

Let us refine the problem statement, By the first player's position strategy [ —
U (t, x) we mean a mapping which associates a set U (¢, ) CC P with each game
position {¢, x}. Any absolutely continuous function z [{1 = z [£; ¢,, x4, U], being
a uniform limit of the Euler polygonal lines za ti = za [¢; £,, ,, U] which satisfy

the following condition dz,
—dt—EFA(t)xA—l-F(t,u[Ti]) (1.2)

TA [tO] == Ty
is called a motion of system (1,1) generated by strategy [J , Here
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T <8< Tiags Ty — T <A, A—0

ultl = U (v, zaltd), F(t, w) = co {f (¢, u, v); vE Q)
In what follows co NN denotes the closed convex envelope ot set V. It is well known
that the family of motions x [¢; ¢,, z,, U] is a nonempty self-compact set. We pose
the following problem,

Problem 1,1. Suppose that a finite-dimensional norm p has been defined in the
space {z},, . It is required to construct the first player's position strategy [/ , leading
any motion x [f] = z [#; ¢,, x,, U] ontoset M by the instant &. This signifies that
the estimate .

min o ({z{thn, M) =0, f<i<H
is fulfilled for each motion x [f] = z [¢; ¢y, 24, Ul ,

Let us write out the basic elements of the program construction {1, 2] to be used in
solving the problem posed above. By X [1, {] we denote the fundamental matrix of
the homogeneous equation
g dz/dv = A (1) x

and we introduce the following two functions:

(P (tyxgl, T) :3' {,X]_T, t]x}m_..:ileaﬁltm + (1‘3)
) min max /' (X [,£] f (£, u, v)}n] d
% ves
i e(t,z,T) = max (1,1 (1.4)
pr{l)=1

Here / is an m~-dimensional vector, the prime denotes transposition, g* is the norm in
the space adjoint to {2}, with metric p. The quantity & (¢, x, 1) (e (£, z, T) > 0)
is the program minimax of the distance [2] from the vector {z |t]},, toset M at the
instant t if an auxiliary program game started from position {¢, 2}. We define the
function .
e (f, r) = min: e (¢, 2, 7), I<KT<O (1. 5)
We shall subsequently use the following sets:
Lt 1) ={ly o* () =1 ¢tz lyn)=c(tz1)} .6
T (2 2) ={rg to =18, ], e(t, 2, 1y) = & (¢, )} (1.7

where the functions ¢ (£, z, I, 1), ¢ (¢, z, 1), & (f, z) are given by relations (1, 3)~
(1.5), respectively, We assume that the following condition is fulfilled,
Condition 1,1, The inequality
min min max (¢, L, T, /) << 0 (1.8)
FEF el Lel
is valid in the region {¢, x}, where ¢ (¢ x) > 0 for any function v, = v (w) map-
ping set P intoset (),

Here vt 1, v,f) = ' {X [T, 1] fim — min max U {X [t,¢]1f(t,u,D}m (1.9

uesP veQ
F=F(tv)=co {f(t u, v(w); ueE P} (1.10)
L:L(t,x,'f), T:T(t,x)

From [2] it follows that if the sets L (¢, x, To), 7' {f, x) consist of the single values
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Ly = 1y (£, z, Tp), 19 = To (£, ) when ¢ (¢, ) > 0, then the tirst player’'s strategy
U is constructed in effective form, guaranteeing the estimate

min, p ({z [1}m, M) < d (1.11)
where
<<t <<d o = {0, & {to, zo}}

for any motion z [#] = z [¢; £y, 2o, U] . In the given case the motions of system
(1.1) can be defined as the solutions of the corresponding contingency equations,

In this paper we do not assurne the uniqueness of the extremal elements [, = [, (f,
x, Ty), Ty = T, (£, ) in the region ¢ (£, ) > 0. Instead of this we have presented
the more general Condition 1,1 and with its fulfillment we have succeeded in determin-
ing the position strategy [/ ensuring estimate (1,11), Generally speaking, however, we
have not succeeded in constructing the first player's strategy [J in an effective manner,

2. We give the solution of the encounter game problem, We construct a certain
system of nonempty closed sets W, (£, 9) (f, < t< V). Here the vector w &=
W, (t, 9) if and only if the inequality

e(t, )< a (e = max {0, & (o, 24)}) 2.1

is valid. The sets W, (¢, 0) are obviously closed since the function # (£, w} in(1.5)
is continuous with respect to {¢, w}. Furthermore, these sets are not empty because the

inclusion M@ — W, ( f, 1‘})
M@ = {w: p ({Whn, M) < 0}

always holds, We present the definition of a u-stable system of sets,

Definition 2,1. A system ofsets W, (£, §) issaid to be u-~stable relative to
M if arbitrary values t, = lt,, 91, w, &= W, (t,, ), 8 =10, & — 1), for
any function v,* mapping set P into set (), we can find at least one motion y* [¢] =
y* [t te, w,, v, *] satisfying the equation

dy*
dt = A(t) y* + F(t7 U:f)
(2.2)
y* el = w,

and for which one of the two inclusions is fulfilled ; either

Z/* [f* + 6] = Wa (t*s + 5: ‘(})

or y* [n] = M for some n < [¢,, t,-+ 6]. According to [3] we can construct a
strategy U@ extremal on the system of sets W, (¢, O) (£, <C {9}, If the system
of sets Wy (£, 9) (£, < ¢ < ¥) isu-stable relative to M@, then the strategy [/t
extremal on these sets guarantees estirnate (1,11) for any motion z [#] = =z [#; ¢,, z,,
7@} of system (1.1).

8, Let us show that when Condition 1,1 is fulfilled the system of sets W, (¢, 8) is
u -stable relative to set M'®). We consider the motions y [f] = y [f; 1, y4, /]
satisfying on the interval [fy, &4 =+ 0! the equation

dyldt = A (O y +f,  yltal = ys (3.1)
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where the vector f & F (f,, vy} of (1,10) is chosen constant, The proof of the asser-
tion on the stability of sets W, (£, 8) (#; < ¢ < ¥) ensues from the following lem-
mas,

Lemma 3.1, Letthe game position {f, ¥} be such that the quantity ¢ (£,
¥4) of (1,5) is strictly positive and the number 7, does not belong to the set 7' (1,
y4) of (1.7). When Condition 1.1 is fulfilled, for any function », = » (1) mapping
P into Q and for a number § > 0 we can find a vector f* = /7 (¢, v,) of (1.10)
and a number § > 0 such that the estimate

e (6 s 1) e (byy yy) FB(E— 1)/ 2
is fulfilled for the motion ¢, [¢] = yy 16 Ly, y4, F*] .
Proof, We compute the total derivative of the function
elt, Ltl=9 @, ylt],,7)
along any motion y [t] == y [; £y, ¥4 f1 of system (3.1). From (1.3),(1.9) we obtain
dolt, Ltlidv =¢ {t, 1,7, /) (3.2)

By the lemma's hypotheses the quantity & (f4, y) is strictly positive, therefore, inequa~-
lity (1. 8) holds for any function vy = » (u) mapping set P into Q. Consequently, we
can find a number T* € 7 (t,, y,) of (1.7) (to* > ts) for which the estimate
min max P (I, lo, 1o ) <O (3.3)
feF =L '
is fulfilled, where F = F (1., vu} of (1,10), L = L (t4, ¥4, To*) of (1.6).
The set L (¢, y, T) is semicontinuous in {¢, ¥, 7}, therefore, for a number § > 0 we
can find { > 0 satisfying the relation

i SRS (3.4)
Here
F = F (t,vu)
L () ==L (tx, y %, To¥, C)={ ,‘Um L(t,y, To%) (3.5)

=t <L By —uslSE

For the chosen number { > 0 we can select a number y > 0 such that the inequality
Tyl —ye | <E
is valid for any motion y lt] =y [#; 1, v,, ] of (3.1), provided |t — 2, | <<y (y <
). We now choose the vector f* & F (t,, vy) from the condition that the left-hand
side of expression (3. 4) is minimum, By virtue of (3, 2),(3. 4), for the motion ¥, 1] =
¥y 155 tes Yur 7¥] 0f (8,1) we obtain

deg(t, 1, To*}] B

dt 2

¢ Uy [0, 1 T0%)

under the condition that ;& L (§) = L (L, y«, To*, L) of (3. 5)

(3.6)

S @ (e Y b T0¥) 4 B (L 1) /2

b e [tga Te -+ 6}’ = min {Y% (’Fﬂ* - i*)}
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The set L (t,, y4,» To*, ) contains the sets
L(t, ye [T L (tey u, To*)
therefore, from the last inequality in (3, 6), and also from (1, 4), (1, 6), we have
& (8 yu [t], To*) & (ty, 14y To*) + B (6 —2,) /2

The estimate
ety lt]) < e (s vo) + B (£ — te) /2

follows from this and from the inclusion tv,* & T (¢t,, y,) , which proves Lemma 3,1,
Let 2, = v (u) be an arbitrary single-valued function mapping the elements of set
P into the elements of set (). We consider the motions satisfying the differential inclu-

sion dysldt = A () ya + F® (¢, vy) (3.7
yp lte] = yy

Here F ® (¢, v,)’is the Euclidean p-neighborhood of set F (t, v,) of (1.10),

Lemma 3.2. Let Condition 1,1 be fulfilled, Then, for any number § >> O we can
find a number 1° (£, < Mp°<C V) and a motion y° {1] = ys° [£; b4, ys, vul, Of sys-
tem (3, 7), for which the relation

e (8, yo°l£]) <e®(tx, yx) FH(1—tx)

is fulfilled, where . .
to<t<ns®,  €°(lx, yx) =max {0, e (%, yx))

Y ({ypo [nﬂo]}m’ M) < So (t*v Z/*) +ﬁ ("]BO - t*)

In fact, because function (1. 5) is continuous, we can find the largest number n =
n (ygl-1) (n < 8),for which the inequality

e (8 yg [t) <& (ty, wa) = B (£ — £,) (3.8)

holds for ¢, <t <Kmy  yg [t] = yu 5 ty, ya, 2] from (3.7). By ng® we denote the
upper bound of the numbers n = v (y; [-]) in (3. 8) over all possible motions of system

(3.7, 1. e. o . _
g ;&p}n(ug[ ) (3.9)

By virtue of the compactness of the solutions of Eq. (3. 7), this upper bound is reached on
some motion yBO [t] = yB° {£; t4, ¥4, 2,]. Let us show that the number ng° of (3. 9)
belongs to the set 7' (ng”, ¥~ Ing"l) of (1.7). Assume that the number 7p° does not
belong to this set, Then, obviously, Mg <{ #. We consider all solutions of (3.7),
{yg* [t] = yp* [t; ts, yx, vul}, satisfying the equality
yp* It = yp°lt]  (t, <t < mp?)

By virtue of the choice of number ng° , the relation

maxi{e (¢, y* [L]) — B (¢ — ()} > & Ly, ys) e < t<sn° + 8, (3.10)

€% (tx, yx) = max {0, e ({+, ys)}

is fulfilled for each motion and for any number 8 = (0, & — ng*}. Here

e Mgy yg® Mp’D = &% (fy, vs) + B (np” — 1) (3.11)
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On the other hand, from (3.11) and Lemma 3,1 it follows that for the number § > 0
we can find a vector f* & F (ng°, »,) and a number 8° >0 ensuring for the motion
ve [t] = ya [t; 1%, wp® [n°), /*] the inequality and the inclusion

e (v [1]) <& (mp®s yp® Ing®D) + B (¢ — 1)) /2 (3.12)
e FO (, v)
for mg® <<t < mg® + 6% Thus, we have constructed the motion yp*{{] = {750 E S PO
vl (pe*[i] = ye® 1] for tx St << mp”, yp* [t] = we U] for ms° <t < n° + 6° satisfying

the estimate
et yp* [1]) T ° (ty, ya) + B (& — o) (3.13)

This last relation follows immediately from (3,11),(3,12), Inequalities (3.10) and
(8.13) are contradictory and, thus, n5° & T (ng°, ¥5°Inp°l) of (1,7), But then from the
definitions of the function € (¢, y) of (1,5) and of the sets 7 ({,y) of (1,7) we obtain

P ({yﬁoé[nﬁcl}m’ My ety ya) + B (ﬂ°ﬁ — ty)

& (t) yﬁo [[]) < &° (t*? y*) + ﬁ (t - [*)

for t, <t < %“. These relations prove Lemma 3,2,

We now show that the sets W, (£, ¥) of (2.1) are u-stable relative to the set M@=
£ 0 (&) M) < ).

Lemma 3,3, Let Condition1.1 be fulfilled; then the sets W, (f, ) are u-stable
relative to M@,

Proof, We choose the values

f* [ [fm ﬁ‘]a Wy E Wa (t*’ {})i 6 & {Oa ﬁ - t*]

arbitrarily and we specify the function vy = » (u) mapping set P into Q. Let f, >0
be a sequence of numbers converging to zero, According to Lemma 3, 2, for each num-
ber » we can find a number v, (t, <7, <9) and a motion ¥, [t] =y, [ t4, wy, vul,
which satisfy the relations

Dy, [ dCE A (D + FEW (2, vu); yn (] = w, (3.14)
e, Uy [t < ° {t,, wy) + ﬁn {t — &)

0 ({yn [nlhms M) < &° (ty, wy) + B (g - £0)

te < My <P

From the sequence of motions ¥, [f; £y, we, v,] we can choose a subsequence ;. [t;
te, Wy, vu] converging uniformly to some function Ya [; ¢4, wy, vu] which, obviously,
is a motion of system (2.2), Furthermore, from the subsequence of numbers 7, we can
choose a subsequence converging to some instant 1. Thus, from (3,14) we obtain

e (t, Ya [E}) < € (t*’ w*) L a
‘tO g t \<: n*? SO (t*’ w*) = max {Ov € (l*! w*)}
for the limit motion yg [t} = v, [t 4y, wy, vul. The u-stability of sets W, (¢, &) (o <

t <L) follows directly from this and from {2,1), which proves Lemma 3, 3.
From Lemma 3, 3 we finally obtain the following assertion,



Sufficient encounter condition in a differential game 753

T heorem 3.1, When Condition 1,1 is fulfilled, the first player’s position strategy
U exists, which guarantees the estimate

min, p ({z [{1}, M) < @
to << t<< ¥, o= max {0, e (¢, z0)}

for any motion z [£f] = z [¢; £, 24, Ul .
The author thanks N, N, Krasovskii for formulating the problem and for constant atten-
tion to the work,
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We pose the problem of error accumulation in linear systems on a finite time
interval under three constraints of the perturbation function and its lower derivatives,
We have shown that the largest error in the system is realized in the class of
piecewise-quadratic functions possessing certain limit properties on the set of
switching points of the system’s impulse transient response and of the maximizing
external influence. Schemes are obtained for the effective solution of the prob-
lem, based on a combination of Bellman's optimality principle and of analytic
information on the extremal properties of the external influences, The present
paper is a development of [1 — 3],

1, Statement of the problem, Let the error in the kth system coordinate
zy(k =1, ..., 1), caused by a perturbing action f (), be the solution of the differ

ential equation n—1 g

(CC},-)
LSS0 .1

dnxk _

el U

in which the coefficients 4; ({) (. = 0, .. ., n — 1) are continuous functions of




