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We consider a position differential game of encounter with a target set at a spe- 

cified instant. We derive one sufficient condition by whose fulfillment the pur- 
suer ensures himself a definite qualitative result of the game. The construction 
of the first player’s strategy is based on the program construction introduced in 

[ 1 - 31. The results abut the investigations in fl - 51. 

1. We consider a conflict-controlled system described by the vector differential 
equation 

dzldt = A (t)z + f (t, u, u) 

II: [t,l = 50, u E P, VEQ 
(1.1) 

Here f (t, U, v) is a continuous n-dimensional vector-valued function, u and D are 

the player’s controls, P and Q are compacta in appropriate vector spaces. By (x}, 
we denote the vector composed from the first m (m Q n) coordinates of vector cc. By 
the problem’s hypothesis a convex bounded closed set M is given in the space {x}, . 
The first player, directing the choice of control u, strives to encounter this set by an 
instant 6 known in advance. The second player (8) obstructs this. 

Let us refine the problem statement. By the first player’s position strategy u = 
U (t, X) we mean a mapping which associates a set U (t, X) C P with each game 
position {t, x}. Any absolutely continuous function J: [tl = x [t; to, x0, [I]. being 
a Uniform limit of the Euler polygonal lines z?A [tj = z~ [t; to, zo, fij which satisfy 
the following condition 

$ e A (t) 23 + F (t, u Fil) (1.2) 

XA [toI =-: XTg 

is called a motion of system (1.1) generated by strategy TJ . Here 
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zi S t < %i+l, zi+1 - Zi<‘Ay ‘+’ 
7.l IZil E u (7i, ZdTJ), F(t, u) = co {f (t, 24, 7J); 2, & Q} 

In what follows co N denotes the closed convex envelope ot set N. It is well known 

that the family of motions x [t; t,, x0, U] is a nonempty self-compact set. We pose 

the following problem. 

Problem 1.1. Suppose that a finite-dimensional norm p has been defined in the 

space {IL}, . It is required to construct the first player’s position strategy u , leading 

any motion z [tl = 2 it; 2,, x0, V] onto set &f by the instant 6, This signifies that 
the estimate 

mint p ((5 [t&, M) = 0, h d t < 6 

is fulfilled for each motion x It1 = 5 It; t,, x0, Ul . 
Let us write out the basic elements of the program construction [I, 21 to be used in 

solving the problem posed above. By X [z, t] we denote the fundamental matrix of 

the homogeneous equation 
dxidz = A (z) x 

and we introduce the following TWO fusion: 

Here I is an m-dimensional vector, the prime denotes transposition, p* is the norm in 

the space adjoint to {x>~ with metric p. The quantity e (t, .q T) (S (t, z, %) >, 0) 
is the program minimax of the distance [2] from the vector {X lzl), to set &f at the 
instant r if an auxiliary program game started from position {t, x}. We define the 

function 
e (t, 2) = mins E (t, X, r), t<z<6 (1.5) 

We shall subsequently use the following sets: 

L (t, 5, z) .= (Z,: p” (I,) = 1; cp (t, 5, I,, r> = e (l, x, z)} (1.6) 

where the functions cp (f, X, I, z), E (t, x, t), E (f, x) are given by relations (1.3)- 

(1.9, respectively. We assume that the following condition is fulfilled. 
Condition 1. 1. The inequality 

miu miii max $ (t! L,, TOO, f) < 0 (1.3) 
fEEp ~,ET l&L 

is valid in the region (t, ~1, where E (t .r) > 0 for any function su, = u fu) map- 

ping set P into set Q . 

Here ~((t,z,z,f)=l’(X[Z,t]f),- z$l maox L’ (X fz, $1 f (t, n, U))M 0.9) 

F ==, P (f, 71,) = co {f (t, a, ?J (74); ZJ E p> (1.10) 

L = L (t, 5, t) , T I= T (t, x) 

From [Zf it follows that if the sets L ft, r, T&, T (t, J) consist of the Single values 
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1, = 1~ (G 5, To), 70 = “0 (t, 5) when E (1, x) > 0, then the first player’s strategy 

U is constructed in effective form, guaranteeing the estimate 

min, P ({x Id),, M) < d (1.11) 
where 

to<tt@ c( = (0, e (to, zof} 

for any motion 5 [t] = z It; rb, x0, U] . In the given case the motions of system 

(1.1) can be defined as the solutions of the corresponding contingency equations. 

In this paper we do not assume the uniqueness of the extremal elements I, = 1, (t, 
x. zO), r0 = ‘cO (t, x) in the region e (t, r) > 0. Instead of this we have presented 
the more general Condition 1.1 and with its fulfillment we have succeeded in determin- 

ing the position strategy u ensuring estimate (1.11). Generally speaking, however, we 
have not succeeded in constructing the first player’s strategy u in an effective manner. 

2, We give the solution of the encounter game problem. We construct a certain 
system of nonempty ciosed sets IV, (f, 6) ( t, < t\< 6). Here the vector w E 
Vv, (t, 6) if and only if the inequality 

a (& 4 \< o (a = max (0, a (to, ~a))) (2.1) 

is valid. The sets wa (t, 6) are obviously closed since the function a (t, w) in (1.5) 
is continuous with respect to {t, W). Furthermore, these sets are not empty because the 
inclusion 

M(“) c wa (t, S) 

always holds. We present the definition of a u-stable system of sets. 
Definition 2.1. A system of sets IVa (t, 6) . 1s said to be u-stable relative to 

J@“) if arbitrary values t, E [to, I?J, w* E W, (t*, 6), 6 c” [O, 8 - t+) , for 
any function v,* mapping set P into set Q, we can rind at least one motion y* [t] = 

y” it; t,, w*, u,* J satisfying the equation 

-g E A (t) y” + F (t, vu*) 

II* [&cl = w* 
(2.2) 

and for which one of the two inclusions is fulfilled : either 

y* It* + 91 E wa (t*, + 6, 8) 

or y* [VI E MC@ for some rj E It,, t, $- b]. According to [3] we can construct a 

strategy U(e) extremal on the system of sets IV, (t, 6) (t, < I < S) , If the system 

of sets IV, (t, 6) (to f t < 6) . 1s u-stable relative to &_f@), then the strategy U(e/ 
extremal on these sets guarantees estimate (1.11) for any motion I ItJ = x [t; t,, so, 
lf@)l of system (1.1). 

3, Let us show that when Condition 1.1 is fulfilled the system of sets ?V, (t, 6) is 
u-stable relative to set &I@). We consider the motions y ItI = y [t; t,, ye, fJ 
satisfying on the interval It+, t, $- fi] the equation 

dyidt = A (0 y + f, y [t*] = Y* (3.1) 
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where the vector f E F (&., vu) of (1.10) is chosen constant. The proof of the asser- 

tion on the stability of sets W, (t, 6) (2s < t < 6) ensues from the following fem- 
mas. 

Lemma 3.1. Let the game position {f,, y*> be such that the quantity F, (&,.,, 
ye) of (1.5) is strictly positive and the number 1, does not belong to the set I’ (t*, 

y*j of (1.7). When Condition 1_ 1 is fulfilled, for any function V, = D (u) mapping 
P into (j and for a number fl > 0 we can find a vector f* E 1; (t.+, 8,) of (1.10) 
and a number 6 > 0 such that the estimate 

e (t, Y* f@ \( e (t*, Y*) f B (f - t*> / 2 

is fulfilled for the motion y* [t] :: y* it; t,, g*, f* J . 
Proof. We compute the total derivative of the function 

rpD, I, rl = cp (t, y it19 L f) 

along any motion Y It1 = Y lt; t*, Y*$ !I of system (3.1). From (1.3). (1.9) we obtain 

dcp lf, I, rlia’r = 9 (t, I, r, f) (3.2) 

By the lemma’s hypotheses the quantity E (t *, Ye) is strictly positive, therefore, inequa- 

lity (1.8) holds for any function V, = v (u) mapping set P into Q. Consequently, we 

can find a number ZO* E T (t*, Y*) of (1.7) (TO* > t*) for which the estimate 

(3.3) 

is fulfilled, where F = P (t*, VU) of (l.lO), L = L (t*, ye, z~*) of (1.6). 
The set L (t, y, Z) is semicontinuous in {t, Y, z), therefore, for a number @ > 0 we 

can find 5 > 0 satisfying the relation 

(3.4) 

Here 

F = F (tpu) 

L (5) ==L (ts, ?/ *, %I*, +I Uui L (4 y, To*) (3.5) 

It- t* f< 5. IY -Y*k6 

For the chosen number 5 > 0 we can select a number y > 0 such that the inequality 

II Y It1 - Y* II u( 5 

is valid for any motion Y it] = Y It; 2,, Y.+, f] of (3.1), provided ) t - t, J 6 y tv < 
5). We now choose the vector f* E 8’ (t*, z+J from the condition that the left-hand 

side of expression (3.4) is minimum. By virtue of (3. i?),(3,4), for the motion y* Ii] = 

Y* it; t*, Y*r f*l of (3.1) we obtain 

d(l) (1, 1, To* I p 
<- (3.6) 

dt 2 
cp (t, Yt [I], I, To*) = ‘p (ie, Ye. 1, To*) + 13 (t - te) / 2 

under the condition that 1 E L (5) = L (1,) YeI T”*, 5) of (3.5) 
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The set L (t*, Y*, zO*, 5) contains the sets 

L (t, y* IW;u vi:, Y,? To*) 

therefore, from the last inequality in (3.6), and also from (1.4). (1.6). we have 

a (t* Y* It1, r,*1 < e (t*, I/*, zo*) + p (C - t*) / 2 

The estimate 
e (t. Y* [tl) < e (f*, y*) + fi (t - t*) / 2 

follows from this and from the inclusion rO* E T (t*, Y*) , which proves Lemma 3.1. 

Let Z’,, = ZJ (u) be an arbitrary single-valued function mapping the elements of set 
P into the elements of set Q. We consider the motions satisfying the differential inclu- 

sion 
dypldt E A (t) yfi + F(a) (t, v,) 

M [t,J = Y* 
(3.7) 

Here F @)(t, &)‘is the Euclidean p-neighborhood of set F (t, u,) of (1.10). 
Lemma 3.2. Let Condition 1.1 be fulfilled. Then, for any number fi > 0 we can 

find a number 7 P0 (t* d %“<o and a motion ypo [t] = yp” It; t,, ye, ~‘~1, of sys- 
tem (3.7), for which the relation 

&(t, yJ.f])eO(t*, Y*) -W-t*) 

is fulfilled, where 
t,<t6Q0, a’(&, y*)=max (0, e(tg, y*)} 

P ({YP" hP"bJ7~ w B E0 (t*, y*) + p (q,3O - t*) 

In fact, because function (1.5) is continuous, we can find the largest number tl = 
n (Y&-I) (q Q ft),for which the inequality 

e (k Yg ItI) < a0 U*, Y*) + B (t - t*) (3.8) 

holds for t, < 1 < q, yp [tl = yR it; t,, ye, uz,l from (3.7). By npO we denote the 
upper bound of the numbers n = n (Ya [.I) in (3. 8) over all possible motions of system 

(3.7), i.e. 
(3.9) 

By virtue of the compactness of the solutions of Eq.(3.7), this upper bound is reached on 

some motion ygo It] = ypo [f; t,, ye, v,,]. Let us show that the number t-la0 of (3. 9) 
belongs to the set 2’ (np”, Yad lrlay]) of (1.7). Assume that the number Tao does not 
belong to this set. Then, obviously, Q” < 6. We consider all solutions of (3.7), 

{ya* it1 = Yfi* [t; t,, !/*, uJ}, satisfying the equality 

yg* ItI = YgO [t1 tt* d t < qp") 

By virtue of the choice of number npO , the relation 

mas,{E (t, Y@* [II) - p (I - 6)) > fO (b, jI4.) /, < I c ljpO + 6, (3.10) 

e” (t*, Y*) = max (0, e (t*, ye)} 

is fulfilled for each motion and for any number S E (0, 6 - na*] . Here 

e (rlpO, YpO qpv = co (f*, ?I*) + P (rlgO - t*) (3.11) 
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On the other hand, from (3.11) and Lemma 3.1 it foliows that for the number fi > 0 
we can find a vector p E F (qso, ul() and a number 6” >O ensuring for the motion 

Y* it] = Y* ft; q~‘, ypO fry”], f*] the inequality and the inclusion 

E (6 Y* ft11 < E hp0, YpO tr)flv + f! (t - I*) / 2 (3.12) 

j* E PC@) (t, vu) 

for 11~~ < t f 96’ + 6”. Thus, we have constructed the motion yk*{l] L !/g*[I; l+.;, !/+ 
(.S:J fvp*[ i] = ya” If] for tr G t G qg”, gfi* 111 = ?I* [II for qa” < t < qeo + 6” satisfying 
the estimate 

8 ftt Yg* ftlf f E0 @*, ?J*) + B (t - f*) (3.13) 

This last relation foltows immediately from (3.111, (3.12). Inequalities (3.10) and 
(3.13) are contradictor and, thus, qp” E T (qtlso, ?~~O[~~‘l) of (1.7). But then from the 

definitions of the function E (t, yf of (1.5) and of the sets T f”, y) of (1.7) we obtain 

for t, < t < QO. These relations prove Lemma 3.2. 
We now show that the sets W, {t, 6) of (2.1) are u-stable relative to the set&@“)- 

@ : P ({*~),m lw G (Jf* 
Lemma 3.3. Let Condition 1.1 be fulfilled ; then the sets wa (5, 6) are u-stable 

relative to Mea). 

Proof, We choose the values 

1, E It,, 61, w* E w, (tat 61, fs & IO, 6 - t*l 

arbitrarily and we specify the function vu = v (u) mapping set P into Q. Let B, > 0 

be a sequence of numbers converging to zero. According to Lemma 3.2, for each num- 
ber n we can find a number Q (t* Q qn < 6) and a motion yIL [tl = Yn [t; t,, w*, %I1 

which satise the relations 

&j, i d! E A ff)y* + F(h) (t, vu); yn ft*f = w* (3.14) 

E ((9 Y, ItI) c 8“ (t+, @‘+I + fi, ft - &f 

p fiY,& IQ&, M) < so Q*, II,*) -k ts, frln --.- k:) 

t, <t<,<tl,, rin Gfi 

From the sequence of motions YR it; t,, =‘*, v,] we can choose a subsequence Y,, ft; 
t *t w*, v,,] converging uniformly to some function Y* It; t,, WI*, ~1 which, obviously, 
is a motion of system (2.2). Furthermore, from the subsequence of numbers ynk we Can 

choose a subsequence converging to some instant q*. Thus, from (3.14) we obtain 

E tt, Y* 14) < 9 (t*, w*) < a 
to 4 t G q7*, 2 (t,, w*) = max {0, 8 (t*, w*)j 

for the limit motion y, 111 = Y* It; t,, u*, ~1 . The u-stability of sets iV=,{t, 6) (to < 

1 < 4?) follows directly from this and from (2. l), which proves Lemma 3.3. 
From Lemma 3.3 we finally obtain the following assertion. 
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Theorem 3.1. When Condition 1.1 is fulfilled, the first player’s position strategy 

u exists, which guarantees the estimate 

min, p ({x [tl},, M) /< a 

t, < t 4 6, a = max (0, E (to, +J} 

for any motion x [tl = x [t; t,, x0, U] . 
The author thanks N. N. Krasovskii for formulating the problem and for constant atten- 

tion to the work. 
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ACCUMULATION 

We pose the problem of error accumulation in linear systems on a finite time 
interval under three constraints ofthe perturbation function and its lower derivatives. 

We have shown that the largest error in the system is realized in the class of 

piecewise-quadratic functions possessing certain limit properties on the set of 
switching points of the system’s impulse transient response and of the maximizing 
external influence. Schemes are obtained for the effective solution of the prob- 
lem, based on a combination of Bellman’s optimality principle and of analytic 
information on the extremal properties of the external influences. The present 
paper is a development of [ 1 - 31. 

2. Statement of the problem, Let the error in the kth system coordinate 
Xk (k = 1, . . ., i), caused by a perturbing action f (I), be the solution of the differ- 

ential equation 
2 = ?il Ai (t} % + f (t) (1.1) 

i=O 

in which the coefficients A i (t) (i = 0, . . . , n - 1) are continuous functions of 


